激光衍射法就是采用一系列的光敏檢測器來測量位置粒徑的顆粒在不同角度上的衍射光的強度,使用衍射模型,通過數(shù)學反演,然后得到樣品的粒度分布。通過該位置檢測器接收到的衍射光強度,得到所對應顆粒粒徑的百分比含量。顆粒衍射光的強度對角度的依賴性是隨著顆粒粒徑的變小而降低,當顆粒小到幾百納米時,其衍射光強對于角度幾乎*失去依賴性,即此時的衍射光會分布在很寬的角度范圍內,而且單位面積上的光強很弱,這增加了檢測的難度。
實現(xiàn)對1um以下及寬粒徑范圍(幾十納米到幾千微米)的樣品的測量是激光衍射法粒度儀的技術關鍵,概況起來,目前有以下幾種技術和光路配置被采用:
1、多透鏡技術
多透鏡系統(tǒng)曾在二十世紀八十年代前被廣泛采用,它使用傅里葉光路配置即樣品池放在聚焦透鏡的前方,配有多個不同焦距的透鏡以適應不同的粒徑范圍。優(yōu)點是設計簡單,只需要分布于幾十度范圍的焦平面檢測器,成本較低。缺點是如果樣品粒徑范圍寬的時候需要更換透鏡,不同透鏡的結果需要拼合,對一些未知粒徑的樣品用一個透鏡測量時可能會丟失信號或對于由于工藝變化導致的樣品粒徑變化不能及時反映。
2、多光源技術
多光源技術也是采用傅里葉光路配置即樣品池在聚焦透鏡的前方,一般只有分布于幾十度角度范圍的檢測器,為了增大相對的檢測角度,使該檢測器能夠接收到小顆粒的衍射光信號,在相對于*光源光軸的不同角度上再配置*或第二激光器。這種技術的優(yōu)點是只需分布于幾十度角度范圍的檢測器,成本較低,測量范圍特別是上限可以比較寬,缺點是分布于小角度范圍的小面積檢測器同時也被用于小顆粒測量,由于小顆粒的衍射光在單位面積上的信號弱,導致小顆粒檢測時的信噪比降低,這就是為什么多光源系統(tǒng)在測量范圍上限超過1500微米左右時,若要同時保證幾微米以下小顆粒的準確測量,需要更換短焦距的聚焦透鏡。另外,多透鏡系統(tǒng)在測量樣品時,不同的激光器是依次開啟,而在干法測量時,由于顆粒只能一次性通過樣品池,只有一個光源能被用于測量,所以一般采用多透鏡技術的干法測量的粒徑下限很難低于250納米 。
3、多方法混合系統(tǒng)
多方法混合系統(tǒng)指的是將激光衍射法與其它方法混合而設計的粒度儀,激光衍射法部分只采用分布于幾十度角度范圍的檢測器,再輔以其它方法如PCS 等,一般幾微米以上用激光衍射法測量,而幾微米以下的顆粒用其它方法測量,理論上講粒徑下限取決于輔助方法的下限,這種方法的優(yōu)點是成本低,總的測量范圍較寬,但因為不同的方法所要求的*的測量條件如樣品濃度等都不一樣,通常難以兼顧,另外由于不同方法間存在的系統(tǒng)誤差,在兩種方法的數(shù)據(jù)擬合區(qū)域往往較難得到理想的結果,除非測量前已經(jīng)知道樣品粒徑只落在衍射法范圍內或輔助方法的范圍內。另外多方法混合系統(tǒng)需采用兩個不同的樣品池,這對于濕法測量來講不是問題,因為樣品可以循環(huán),但對干法而言樣品只能一次性通過樣品池而不能循環(huán),不能用兩種方法同時測量,因而多種方法混合系統(tǒng)在干法測量時的粒徑下限只能到幾百納米。
4、非均勻交叉大面積補償?shù)膶捊嵌葯z測技術及反傅里葉光路系統(tǒng)
非均勻交叉大面積補償?shù)膶捊嵌葯z測及反傅里葉光路系統(tǒng)是二十世紀九十年代后期發(fā)展起來的技術,采用反傅里葉光路配置即樣品池置于聚焦透鏡的后面,這樣使檢測器在極大的角度范圍內排列,一般真正物理檢測角度可達150度,從而使采用單一透鏡測量幾十納米至幾千微米的樣品成為可能,光路示意圖如圖 所示,在檢測器的設計上采用了非均勻交叉而且隨著角度的增大檢測器的面積也增大的排列方式,既保證了大顆粒測量時的分辨率也保證了小顆粒檢測時的信噪比和靈敏度。無需更換透鏡及輔助其它方法就可測量從幾十納米到幾千微米的顆粒,即使是干法測量,其下限也可達到0.1微米。這種方法的缺點是儀器的成本相對于前面的幾種方法而言偏高。
從激光器發(fā)出的激光束經(jīng)顯微鏡聚焦、針孔濾波和準直鏡準直后,變成直徑約10 mm的平行光束,該光束照射到待測的顆粒上,一部分光被散射,散射光經(jīng)傅里葉透鏡后,照射到廣電探測器陣列上。由于廣電探測器處在傅里葉透鏡的焦平面上,因此探測器上的任一點都對應于某一確定的散射角。廣電探測器陣列由一系列同心環(huán)帶組成,每個環(huán)帶是一個獨立的探測器,能將投射到上面的散射光能線性地轉換成電壓,然后送給數(shù)據(jù)采集卡,該卡將電信號放大,在進行A/D轉后后送入計算機。